

Accurately and instantly measures the number of colonies in a sample

PSF-1000

Automatic Colony Counter

The World Latest Automatic Colony Counter

Improve your work efficiency with problem solutions.

Our Colony Counter solves these problems

Problem 1

Manual counting methods take time and also there is huge quantities of specimen.

- Manual counting takes too much time and delays other operations.
- Counting operation causes stiff neck and shoulders.

Measuring method is not consistent due to visual measurement.

- Accurate measurement is hard when in measuring coliform bacteria bigger than 0.5mm.
- Due to physical condition of the day, it may be possible to miss small colonies.

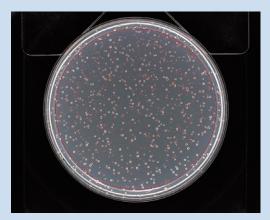
Accurate measurement decreases when in measuring a widespread colony.

 There might be possibly existing beneath the widespread colonies on the surface of pouring culture medium, however it counts as single colony.

Existing measuring devices is unable to measure separately in terms of various color case.

 In terms of manual counting, it uses different color marker to count, however this makes less work efficiency.

10 minutes manual counting method makes just 5 seconds.

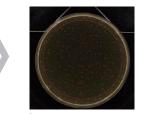

It may differ depending on the number and kind of the colonies.

What is the Automatic Colony Counter.

A device that enables to count immediately the number of colonies in a designated area.

Original image

Measured image


Automatic Colony Counter will solve various problems.

Manual counting methods take time and also there is huge quantities of specimen.

In case of more than 300 colonies in one petri dish, it takes 5 minutes by manual measurement, but it takes only 3 seconds by automatic measurement.

Original image

Measured image

Reason

High speed image processing makes quick operation. Without fatigue, it enables to complete with one single person even many specimen case. Without fatigue, it enables to complete with one single person even many specimen case.

Accurate measurement decreases when in measuring a widespread colony.

It measures only the area measured accurately and enables CFU conversion.

Measured image

Original image

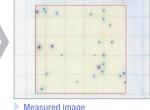
Beason

In terms of automatic measurement, widespread colonies can be excluded automatically from measurement objects. Measurable areas are automatically calculated and it enables accurate CFU conversion.

Measuring method is not consistent due to visual measurement.

Individual measurement with fixed size of colonies makes stable and consistent measurement.

Reason


The area calculation of each colonies enabled to measure individually only designated diameter. As long as culture medium thickness is fixed, it enabled to measure only designated colony by fixed binary coefficient.

Existing measuring devices is unable to measure separately in terms of various color case.

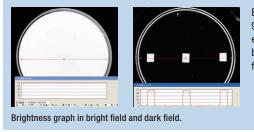
Max 4 kinds of colonies can be measured individually. For example, "separate by 4 different colors", "separate by 2 different colors and sizes", "separate by different colors and brightness".it is possible to set conditions appropriately up to culture medium and colonies.

Reason

This devices is equipped with color camera. Setting can be done easily by simple clicking the measurement objects on the display.

We provide solution about further problems below.

	1 Various shape of colonies is possible to measure automatically?	>	Solutions	Colonies are selected by the brightness and their color information, therefore it does not matter for the shape.
	2 Colonies with residue are possible to measure?	>		As long as colonies and residues size are different, it is possible to measure.
Prob	3 Various size of colonies is possible to measure automatically?	> > >		It is possible to measure by expanding measurement area.
Problems	4 Very tiny and thin colonies are possible to measure?			It is possible to measure all as colony, for instance, brighter objects than culture medium.
	5 Colonies are big and sticking together, then is it possible to measure under this condition?			It is possible to measure separately by overlapping function.
	6 Is it possible to compare visual measuring result and the result of automatic one.			Visual measurement enables to measure marked petri dish by marker.


It enables accurate measurement even culture media with unclear colonies or uneven thickness.

Uniform light source solves slight difference between culture medium and colonies.

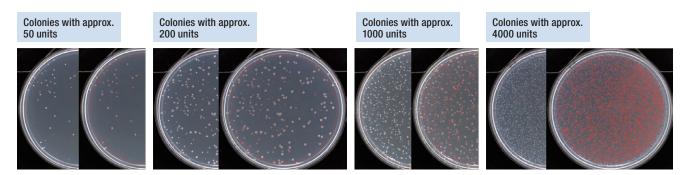
Necessity of uniform light source over the whole petri dish.

In order to measure accurately, it is necessary to have hardware with even light source and adjustment by software even culture medium has uneven conditions.Uniform light source can be performed both hardware and software aspects.

High accurate measurement can be achieved by calibrating brightness of culture medium which has uneven thickness.

Even light source in 90 φ Petri dish exposed to both bright field and dark field.

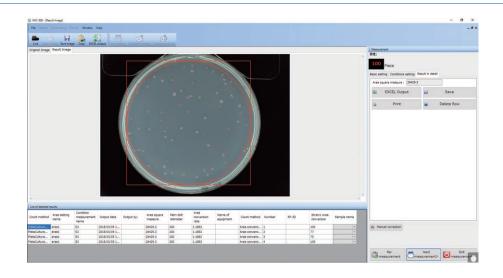
Inclination can be seen on the background image with monochrome conversion.


After calibration

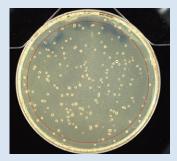
Background of monochrome image with calibration can be processed by software.

13

Counting accuracy of colonies with different quantities

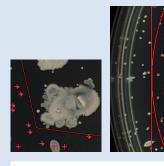


Under the same measurement condition, accurate counting can be achieved regardless of colony quantities.


Moreover, accurate counting can be achieved even if there is residue or a sedimentation.

But depends on colony, in some case, accurate counting may not be possible.

High accurate counting can be achieved with various colony quantities


Measurement functions when there is a residue or a sedimentation

Measured by difference between a colony and other features

It enables to measure if there is difference of colony, residue, sedimentation, size, brightness and color.

Automatic delete function for a widespread colony

Unclear part can be removed your designated area by PC's mouse. Removed part woud be converted into area calculation.

Manual adjustment for measurement result

Automatic calculation with manual adjustment

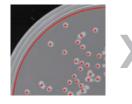
- 1. Specify the size and range of target colony.
- Area that needs to be checked by human can be added or deleted by manual mode. Combination of automatic and manual is possible.

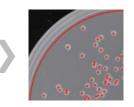
Measuring result can be displayed or transferred to Excel file.

In a default setting, Petri Dish No, the number of colonies and the measurement area will be displayed on a software. Measuring result can be transformed to Excel sheet or CSV file.

Count method	Area setting name	Condition measurement name	Output date	Output by:	Area square measure	Petri dish diameter	Area conversion rate	Name of equipment	Count method	Number	RF-ID	Strain1 Area conversion	Sample name
PlateOulture	area1	\$3	2018/03/05 1		25429.3	200	1.1892		Area conversi	1		100	Y
PlateCulture	area1	53	2018/03/05 1		26429.3	200	1.1892		Area conversi	2		77	×
PlateCulture	area1	\$3	2018/03/05 1		26429.3	200	1.1892		Area consert			30	2
PlateCulture	area1	53	2018/03/05 1		26429.3	200	1.1892						×
								Disp	play on	the s	oftwa	re	

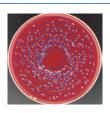
Export to Excel file


A1	٣	: ×	\sim	fx							
	Α	В	С	D	E	F	G	Н	I	J	к
1											
2 3											
4	Dat	e	2018	3/3/5 '	15:11	Name of ea	quipment			Approval	Create
5	Outpu	Output by:			Count method Plate culture medium m			m			
6	Area square measure 26429.3			3	Petri dish o	diameter	200				
7	Area Conversion Rate		118.92		Count method		Area conversion				
8	Number	Strain 1	Strain 2	Strain 3	Strain 4	Chulton ratio of stock solution	Dropping amount	CFU/mI	Condition measurement	nt Sample name	Image link
9	1	100	0	0	0	1	1	0.00×10 ⁰	S3		
10	2	77	0	0	0	1	1	0.00×10 ⁰	S3 Dis	Display in Excel Data File	
11	3	70	0	0	0	1	1	0.00×10 ⁰	S3	1	
12	4	100	0	0	0	1	1	0.00×10^{0}	S3		


Standard Software

Standard software can be managed various kind of specimen like circle, rectangle and spiral type.

Overlap differentiation function


Overlapping colonies can be automatically separated for individual measurement.

Spiral measurement function

Standard software includes spiral colony measurement.

Any kind of spiral plater can be used by changing the area freely and it corresponds to 2 patterns (Ring type and Spiral type).

A ring type can output the number of colonies and spiral type can output cumulated colony within measurable area.

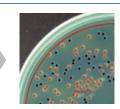
Adjustment function for uneven brightness

Even uneven thickness of culture medium can be adjusted brightness and measure with high accuracy.

Selective counting function by size

Due to selecting counting function by size, it enables to remove scattered colonies and count.

Image of adjustment function



Separate measurement by color extraction

Up to four types of colonies can be measured separately in different colors.

Software

Functions	Common features of PSF-1000/ PSF-2000					
Measurement result indicator	Bacteria Colony: Number of colony, measurement area					
Binarization methods selection	Manual binarization, Binarization by color extraction					
Preprocessing for binarization	Adjustment of uneven brightness (in case of uneven thickness of culture medium)					
Offset	Offset of binarized colony					
Selection by size (Options available)	Decide the range of target colony depending on colony size					
Overlap differentiation	Automatically separate and measure overlapping colonies					
Save process	Save process for each colony specimen recipe					
Manual deletion function	Manually designated area deletion of colonies or dimension by a mouse					
Manual calibration measurement	After automatic counting, if colony counting has error, it enables to calibrate manually adding or removing					
Image saving	Original image, image with counting mark					
Spiral counting	Counts the number of colonies by the spiral method					
Data output/ saving	Output to Excel sheet/ save in a CSV format					
Recalculation	Recalculation by retrieving saved images					
Regular inspection function	For validation of the equipment, manual calibration is not allowed in the measurement					

Japan's top Automatic Colony Counter with wide variety of measurement cases.

General viable bacteria

Normal agar media, general viable bacteria, all colony counting in the measurement area

Normal agar media, general viable bacteria

Measured image

the measurement area Image is without manual correction

Mutagen testing (Ames)

If the number of colonies increases or decreases, it enables to count accurately on the same setting regardless of the number of colonies.

Pharmaceutical industry

It enables to measure colony, inhabitation zone in one device.

Plaque

Optional software is required for inhabitation zone measurement.

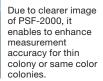
Lactic bacteria

All colony counting with a petri dish cover If condensation has small mist, it enables to measure with cover

Food industry and food distribution industry

Measured image

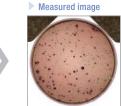
Measurement of general viable bacteria (All colony counting in the measurement area)


Specimen examples for each machines

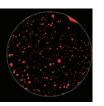
Compares to PSF-1000, PSF-2000 can shoot sharper image with high contrast of colonies and culture media, therefore it can enhance measurement accuracy of tiny colonies.

Image of PSF-1000 type with top light

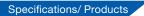
Image of PSF-2000 type with top light


Water Analysis industry

Desoxycholate medium, Original image of coliform bacteria


Original image

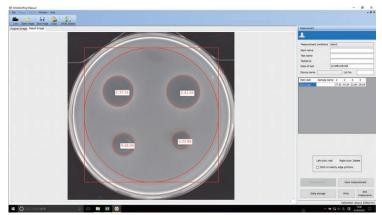
Desoxycholate medium, Original image of coliform bacteria



Desoxycholate Coliform bacteria colonies Measured image bigger than 0.5mm

Selected image in setting conditionThe area marked color is the colonies bigger than 0.5mm.

Hardware



	PSF-2000	PSF-1000					
Dimensions of main unit	Approx. W280×D320×H620	Approx. W300×D350×H620					
Weight	Main unit: Approx. 17kg	Main unit: Approx. 15kg					
Power Source	AC100-110V 50/60Hz						
System configuration	Main Unit, (PC and Monitor are sold separately)						
Operating environment	10-35°C, 20-80% humidity						
Camera Resolution	5.0- megapixel CMOS	3.0- megapixel CMOS					
Specification of camera	Color camera						
Measurement object	Viable bacteria colonies on a petri dish						
Size of petri dish	90 mm dian	90 mm diameter or less					
Measurement size	0.1 mm per 90 mm-viewing field						
Measurement time	Approx. 1 to 3 seconds per petri dish						
Maximum number of colonies	Maximum number of colonies Approx. 8000 viable bacteria colonies						
Lighting method	Dark field, brigt	Dark field, bright field, top light					

Option

Inhabitation Zone Measurement Software

Make sure to read the instruction manual carefully before use.
Specifications and appearance of products may change due to further improvement without prior notice.
The actual color of the product may be slightly different from the printed picture in this brochure.

SHASHIN KAGAKU CO., LTD. PRODUCT COMPANY

7-2-10, Nojihigashi Kusatsu-City, Shiga 525-0058, Japan Tel: +81-77-566-1208 Fax: +81-77-565-3506

URL: http://www.shashin-kagaku.co.jp/skp/sales/acc/ Contact: http://www.shashin-kagaku.co.jp/skp/en/contact/index.php Sales Distributor